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Abstract

The goal of this study was to investigate whether chilling tolerance of C4 photosynthesis in Miscanthus can be

transferred to sugarcane by hybridization. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of

photosystem II (ФPSII) were measured in warm conditions (25 °C/20 °C), and then during and following a chill-
ing treatment of 10 °C/5 °C for 11 day in controlled environment chambers. Two of three hybrids (miscanes),

‘US 84-1058’ and ‘US 87-1019’, did not differ significantly from the chilling tolerant M. 9giganteus ‘Illinois’

(Mxg), for Asat, and ΦPSII measured during chilling. For Mxg grown at 10 °C/5 °C for 11 days, Asat was 4.4 lmol

m�2 s�1, while for miscane ‘US 84-1058’ and ‘US 87-1019’, Asat was 5.7 and 3.5 lmol m�2 s�1, respectively. Mis-

canes ‘US 84-1058’ and ‘US 87-1019’ and Mxg had significantly higher rates of Asat during chilling than three

tested sugarcanes. A third miscane showed lower rates than Mxg during chilling, but recovered to higher rates

than sugarcane upon return to warm conditions. Chilling tolerance of ‘US 84-1058’ was further confirmed under

autumn field conditions in southern Illinois. The selected chilling tolerant miscanes have particular value for
biomass feedstock and biofuel production and at the same time they can be a starting point for extending sugar-

cane’s range to colder climates.
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Introduction

Sugarcane (Saccharum spp. hybrid) is one of the world’s

most important crops. In 2013, sugarcane produced 1.9

billion tonnes of biomass, more than any other single

crop, for sugar and bioenergy via ethanol and electricity

(Botha & Moore, 2014; FAOSTAT, 2014). Sugarcane is

grown commercially in over 100 countries on a total of

26.5 million hectares (data for 2013; FAOSTAT, 2014).

However, commercial sugarcane production is limited to

tropical and subtropical environments, due to the crop’s

limited tolerance to cold; southern Louisiana, USA, is

perhaps where commercial production is the most chal-

lenged by cold. Agronomic success of modern sugarcane

varieties can be explained by effective introgression of

genes from wild germplasm, particularly from S. sponta-

neum into S. officinarum, starting in the early 1900s

(Daniels & Roach, 1987; D’Hont et al., 1996; Hoarau et al.,

2001; Piperidis et al., 2010; Andru et al., 2011). Additional

genetic contributions from S. robustum, S. sinense and

S. barberi are most likely present in modern sugarcane

varieties (Daniels & Roach, 1987; Lima et al., 2002; Brown

et al., 2007). The introgressed genes provide sources of

disease resistance, vigor, ability to ratoon, and better

yields under abiotic stresses (Mangelsdorf, 1960; Chen &

Lo, 1988; Chen, 1993).

Miscanthus is a potentially valuable genetic resource

for improving sugarcane. Particularly, Miscanthus is a

source of resistance to downy mildew (Peronosclerospora

sacchari), culmicolus smut (Sporisorium scitamineum;

Chen & Lo, 1988), lesion nematodes (Pratylenchus spp.;

E. Sacks, personal communication), as well as tolerance

to drought and cold (Lo et al., 1978). Previously, the Tai-

wan Sugarcane Institute’s collection of over 120 Miscan-

thus clones was evaluated to select parents for

resistance to culmicolus smut and downy mildew and

then to introduce the resistance into sugarcane by inter-

generic hybridization with sugarcane and subsequent

backcrossing to sugarcane (Chen & Lo, 1988). In the sec-

ond backcross of the intergeneric hybrids to sugarcane

(BC2), the downy mildew resistance inherited from

Miscanthus was maintained and at the same time sugar

content similar to the sugarcane parent’s was restored.
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The hybrids of Saccharum 9 Miscanthus are sometimes

named ‘miscanes’ and in addition to their use for sugar-

cane improvement, they also show promise as a highly

productive cellulosic biomass crop (Park et al., 2011).

Although there are many reports about hybrids between

Saccharum and Miscanthus (Li et al., 1948, 1953, 1961;

Loh & Wu, 1949; Price, 1965; Chen & Lo, 1988; Xiao &

Tai, 1994; Burner, 1997; Chen et al., 2000), there has been

little reported on tolerance of miscanes to abiotic stres-

ses, particularly chill tolerance of photosynthesis

(≤14 °C) (Burner et al., 2009).
C4 is potentially more efficient than C3 photosynthesis

in its use of light, nitrogen, and water (Long, 1983; Long

& Spence, 2013). However, in cooler environments, peak

yields of most C4 plants are markedly reduced, and

only a few C4 species (e.g., Miscanthus 9giganteus, Spar-

tina anglica, and Spartina pectinata) can match the pro-

duction of C3 crops under cooler temperatures (Heaton

et al., 2008; Long & Spence, 2013; Sage et al., 2014). In

stark contrast to Miscanthus, sugarcane is noted to be

one of the most chilling sensitive crop species. When

grown at 10 °C/5 °C (day/night) for 11 days, sugarcane

exhibited a >98% reduction in CO2 assimilation relative

to control plants grown at 25 °C/20 °C (day/night)

(Głowacka et al., 2014). At 8–12 °C, sugarcane CO2

assimilation extrapolates to zero (Nose et al., 1994) while

its close relative M. 9giganteus retains most of its photo-

synthetic capacity (Farage et al., 2006). Below 20 °C,
leaves of sugarcane grow slowly (Allison et al., 2007)

and when grown below 10–15 °C leaf elongation is neg-

ligible (1.4 mm day�1) (Głowacka et al., 2014) or absent

(Allison et al., 2007). Studies of the effect of cool temper-

atures on field-grown sugarcane in Hawaii revealed sea-

sonal differences in chilling injury. In winter, minimum

leaf temperatures of ca. 14 °C were associated with inhi-

bition, and in summer, minimum temperatures as high

as ca. 20 °C were sufficiently cool to reduce the maxi-

mal photosynthesis capacity (Grantz, 1989). For these

reasons, sugarcane is usually grown between latitude

30N and 35S, but its northern range limit has not been

firmly established. In contrast to sugarcane, the excep-

tional chilling tolerance of Miscanthus allows it to be

grown with success in the cooler climates of NW Eur-

ope (Beale & Long, 1995; Lewandowski et al., 2000; Clif-

ton-Brown et al., 2001; Je _zowski et al., 2011) and the

Midwest USA (Heaton et al., 2008). Thus, hybridization

of sugarcane with chilling tolerant Miscanthus germ-

plasm could theoretically provide a means to develop

more chilling tolerant sugarcane.

For perennial plants adapted to temperate environ-

ments, overwintering requires survival at temperatures

that are not conducive to growth, and especially toler-

ance to freezing. For Miscanthus, overwintering in tem-

perate environments is facilitated by dormancy. After a

perennial crop survives the winter, its next challenge is

to establish photosynthetically competent leaves as early

in the growing season as possible and maintain photo-

synthesis as late into the growing season as tempera-

tures will allow, thereby maximizing carbon

assimilation over the season (Long & Spence, 2013). As

demonstrated by Farrell et al.’s (2006), productivity

model, extending the growing season for Miscanthus by

30 days, would result in up to 25% higher yield. How-

ever, earlier canopy development will only result in

higher yield if early growth and low temperature toler-

ance are combined. Leaf necrosis resulting from late

frosts during the beginning of spring can greatly retard

canopy establishment because few nutrients will remain

in the rhizomes after initial growth for a second cohort

of shoots (Kaiser, 2014; K. Głowacka data not pub-

lished). For these reasons, early emergence of leaves

that are photosynthetically competent at chilling tem-

peratures is the crucial feature of highly productive

perennial grasses in temperate climate.

For the present study, we chose three Saccharum sp. 9

Miscanthus sp. hybrids that had been previously

observed to overwinter as far north as Booneville,

Arkansas (35°050N, 93°590W), with a minimum winter

air temperature of �14 °C and an average monthly tem-

perature of �0.3 °C in the coldest month of 2000 (Bur-

ner et al., 2009). Although rhizomes of these three

selected miscanes showed cold tolerance for overwinter-

ing, their ability to maintain photosynthetic capacity in

aboveground tissues under chilling conditions (≤14 °C)
has not been determined.

This study examines whether (i) the chilling tolerance

of C4 photosynthesis in Miscanthus is apparent in the

hybrids under controlled and field conditions; (ii) the

hybrids show improved recovery of photosynthesis

upon return to warm conditions relative to sugarcane;

and (iii) the hybrids retain the high photosynthetic

capacity of sugarcane under warm conditions, that is, is

chilling tolerance achieved at the expense of capacity

under warm conditions?

Materials and methods

Plant material

Eight genotypes were studied (Table 1) as follows: three mis-

canes (‘US84-1028’, ‘US84-1058’, and ‘US87-1019’), three sugar-

canes (Saccharum sp. ‘L79-1002’, S. officinarum ‘Louisiana

Purple’, and Saccharum hybr. ‘NCo310’), the chill tolerant con-

trol M. 9giganteus (3x) ‘Illinois’ (Mxg), and a chilling sensitive

control, Z. mays ‘FR1064’. Miscane, ‘US84-1028’, was obtained

from a cross between the elite sugarcane cultivar Saccharum sp.

‘CP78-2042’ (GRIN, 2008) and M. sinensis clone ‘US58-2-1’ (Bur-

ner et al., 2009). Miscane ‘US84-1058’ was a hybrid between the

wild sugarcane S. spontaneum ‘Saudi Arabia’ and an unspeci-
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fied Miscanthus clone (Burner et al., 2009). The third miscane

study, ‘US87-1019’, was from a cross between the commercial

cultivar Saccharum hybr. ‘NCo310’, developed in KwaZulu-

Natal, South Africa (GRIN, 2014), and Miscanthus sp. clone

‘3905’ (Tai & Miller, 1988; Tai et al., 1991; Burner et al., 2009).

The studied miscanes were first generation progeny (F1) of

crosses made in the 1980s by USDA-ARS in Florida, USA. The

Miscanthus parental lines of the three miscanes were no longer

available from USDA, and similarly, the Saccharum sp. parent,

‘CP78-2042’, was also unavailable (J. C. Comstock, personal

communication). Saccharum sp. ‘L79-1002’ is an energycane

bred for Louisiana; it is an F1 hybrid of commercial sugarcane

‘CP 52-68’ and S. spontaneum (Bischoff et al., 2008). Previously,

it was shown that Saccharum sp. ‘L79-1002’ grown in a location

farther north (32.1°N latitude) than traditional sugarcane pro-

duction can produce higher total yield (entire above ground

biomass) than the commercial sugarcane standard, ‘CP 65-357’

(Bischoff et al., 2008).

Propagation of plant material

The sugarcanes and miscanes were propagated from 10 to

15 cm stem sections with mature buds at the nodes. With the

sheathing leaves removed, bare stem pieces were planted ver-

tically in cell trays (38-cell star trays; T.O. Plastics) with one

stem piece per cell containing a peat-, bark-, and perlite-based

growing medium (Metro-Mix 900; Sun Gro Horticulture, Aga-

wam, MA, USA). Cells were kept initially in greenhouse

under mist (VibroNet Mister Nozzle, 20.1 l h�1; Netafime; Tel

Aviv, Israel) for 10s every 10 min during daylight hours. The

day/night cycle followed natural light with the temperatures

25 °C/21 °C. After the new shoots appeared, clonal divisions

were transferred to 1 l pots of the same soil mix (mini-treepot

# MT38; Stuewe & Sons, Tangent, OR, USA) for subsequent

use in controlled environment chambers. Mxg was propagated

from 3-cm-long rhizome pieces with visible roots and nodes,

then grown in 1 l pots as described above. Z. mays seeds were

sown directly into 1 l pots. When the plants were transferred

to minitreepots, an all-purpose slow release fertilizer was

added following the manufacturer’s instructions (Osmocote

Classic, 8–9 mo 13-13-13; Everris NA, Inc., Dublin, OH, USA),

and one teaspoon of additional ferrous sulfate heptahydrate

per pot was added (QC Corporation, Girardeau, MO, USA).

Prior to transfer to controlled environment cabinets, plants

were grown in a greenhouse at ~25 °C. Throughout, soil mois-

ture content was maintained by watering to field capacity

daily.

Gas exchange and chlorophyll fluorescence in
controlled environment chambers

To mimic the type of chilling that might develop during spring

after leaf emergence or to expanded leaves in the autumn, the

plants were grown at: 25 °C day/20 °C night (warm) for

10 days, followed by 11 days at 10 °C/5 °C (chilling), and then

returned to 25 °C/20 °C for one day. From three to six repli-

cate, plants for each of the eight accessions were grown in two

controlled environment chambers (Conviron PGC20; Con-

trolled Environments, Winnipeg, Manitoba, Canada) equipped

with an opened counter-balanced light canopy with ten high

output dimmable metal halide bulbs (Mastercolor CDM_TP

MV; PHILLIPS).

Table 1 Accessions of miscanes and controls studied for photosynthetic response to low temperature, including three Saccharum 9

Miscanthus hybrids (miscanes), three controls from Saccharum, one from Zea and one from Miscanthus

Name Accession identifier Pedigree Source

Putative miscanes (Saccharum 9 Miscanthus hybrid)*

Miscane ‘US84-1028’ US84-1028 Saccharum sp ‘CP78-2042’ 9

M. sinensis clone ‘US58-2-1’

USDA-ARS Sugarcane Field Station,

Canal Point, FL

Miscane ‘US84-1058’ US84-1058 S. spontaneum ‘Saudi Arabia’ 9

unspecified Miscanthus sp.

USDA-ARS Sugarcane Field Station,

Canal Point, FL

Miscane ‘US87-1019’ US87-1019 Saccharum hybr. ‘NCo310’ 9

Miscanthus sp. clone ‘3905’

USDA-ARS Sugarcane Field Station,

Canal Point, FL

Controls from Saccharum

Saccharum sp. ‘L79-1002’ PI651501 USDA-NPGS

S. officinarum ‘Louisiana Purple’ PI495639 USDA-NPGS

Saccharum hybr. ‘NCo310’ PI504672 USDA-NPGS

Negative controls from Zea

Zea mays inbred line ‘FR1064’ FR1064 S. Moose, UI, USA Illinois Foundation

Seeds, IL, USA

Positive controls from Miscanthus

M. 9giganteus ‘Illinois’ UI10-00107 T. Voigt, UI, USA Chicago Botanic

Garden, USA

UI, University of Illinois; USDA-ARS, United States Department of Agriculture – Agricultural Research Service; USDA-NPGS, United

States Department of Agriculture – National Plant Germplasm System.

*Tai & Miller, 1988; Tai et al., 1991; Burner et al., 2009.
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Leaf photosynthetic gas exchange and modulated chloro-

phyll fluorescence were measured on the most recently

emerged leaf on the main stem, as judged by ligule appearance.

The positions of plants within the chambers were changed

every 2 days to avoid confounding any undetected variation in

environment within the chamber with accessions. In both

chambers, a 14-h-day/10-h-night cycle with 1000 lmol photons

m�2 s�1 and relative humidity of 65% was maintained. Leaf

photosynthetic gas exchange and modulated chlorophyll fluo-

rescence were measured in situ on the most recent fully

expanded attached leaves, with an open gas exchange system

incorporating differential infrared CO2 and water vapor ana-

lyzers (LI-6400, LI-COR, Lincoln, NE, USA). With this system,

the leaf was enclosed in a controlled environment cuvette,

which tracked the light, temperature, and humidity in the con-

trolled environment chamber. Chlorophyll pulse amplitude

modulated fluorescence was measured simultaneously with a

fluorometer incorporated into the cuvette lid (LI-6400-40;

LI-COR, Inc.). Measurements were conducted in ambient air

(210 mmol mol�1 O2 and 390 lmol mol�1 CO2), 1000 lmol m�2

s�1 photon flux and 65% relative humidity. Leaf temperature

was maintained at the growth temperature for each accession

and treatment. Actinic light was supplied by light-emitting

diodes (90% red light, 630 nm; 10% blue light, 470 nm). To

maximize the fluorescence emissions, the fluorometer parame-

ters (e.g., flash intensity and duration) were adjusted and the

multiphase protocol was used (Genty et al., 1989). These mea-

surements were taken in warm conditions (25 °C) just prior to

the chilling treatment, immediately after the temperature was

reduced to 10 °C (day 0), during each of the 11 days at 10 °C

(except days 6, 8, and 10), and finally one day after transferring

the plants back to 25 °C (12th day of the experiment – recov-

ery). All measurements were taken during the daylight hours

on light-adapted leaves when a steady state CO2 and water

vapor flux was obtained in the cuvette (20–50 min). For each

accession, from three to six replicate plants were measured for

each treatment. From these procedures, measurements of light-

saturated leaf net CO2 uptake per unit leaf area (Asat), quantum

yield of photosystem II (ФPSII), stomatal conductance to water

vapor (gs), and intercellular CO2 concentration (ci) were

obtained as described previously (Bernacchi et al., 2003).

Field experiment

A field experiment was established on May 22, 2013 at the

Dixon Springs Agricultural Center (37° 26018″N, 88°39056″ W;

USDA hardiness zone 6/7 border) from plugs propagated in

cells, as detailed above. Plots were single rows of eight plants

(ramets), spaced on 0.9 m centers. The trial was a randomized

complete block design with four replicates. The soil was a

silt loam (fine-silty, mixed, active, mesic, Oxyaquic, Frag-

iudalfs, 1–3% organic matter). Air temperature at a height of

2 m above ground was recorded every 10 s by the meteorologi-

cal station which was located 400 m away from the planting

(WARM, 2014).

At the end of first growing season on October 23, 2013 and

October 24, 2013, photosynthetic leaf CO2 uptake was mea-

sured, as described above, in ambient air (210 mmol mol�1 O2

and 400 lmol mol�1 CO2), at 1500 lmol m�2 s�1 of photon

flux and 65% relative humidity. Leaf temperature was main-

tained in the cuvette at the average ambient temperature of

13 °C.

Data analysis

Statistical analyses were performed with SAS PROCEDURE GLM

(SAS v. 9.3, SAS Institute, Cary, NC, USA). For data from the

growth chamber experiment, two-way analyses of variance

were conducted to determine whether genotype and/or treat-

ment had significant effects on Asat, ФPSII, gs, and ci/ca. Analy-

ses were conducted for each day of the experiment. Dunnett’s

multiple comparison tests were used to compare each genotype

with the chilling tolerant control, Mxg (Fig. 1), or with the chill-

ing sensitive control, Saccharum sp. ‘L79-1002’ (Fig. 2). For the

field experiment, in which data were collected during two con-

secutive days, two-way analyses of variance were performed to

assess whether there were significant differences between days

and tested genotypes. As the date of measurement in the field

experiment did not significantly affect the measured parame-

ters Asat, gs, and ci/ca (P = 0.08; P = 0.29; P = 0.65, respec-

tively), the date factor was omitted in the final analyses. For

comparisons of means between the Mxg control and other

genotypes, Dunnett’s was used (Fig. 3c–e).

Fig. 1 (a–b) Light-saturated leaf net CO2 uptake rate (Asat), (c–d) quantum yield of photosystem II (ФPSII), (e–f) stomatal conductance

to water vapor (gs), and (g–h) ratio of intercellular to atmospheric CO2 concentration (ci/ca) for warm conditions prior to chilling treat-

ment, after transfer of plants to chilling (day 0), on 11th day of chilling treatment and one day after transfer of plants back to the

warm conditions (12th day of experiment – recovery). Left panels (a, c, e, and g) are absolute values; right panels (b, d, f, and h) indi-

cate responses to treatments expressed as a percentage of rates observed in warm conditions before the chilling treatment (i.e., per-

centage of control, white bars in the adjacent left panels). Plants were grown at 25 °C/20 °C (warm) day/night, with 14-h-day/10-h-

night cycle under 1000 lmol photons m�2 s�1, excepting the 11 days at 10 °C/5 °C (chilling). In all panels, accessions are ordered

according to Asat on day 12 of the experiment (panel a; from highest to lowest; fourth bar (black fill) for each genotype). For each

treatment stage, an asterisk indicates a significantly higher value and a cross indicates a significantly lower value in comparison with

Mxg ‘Illinois’ based on Dunnett’s test (P ≤ 0.05). Time-point values for Mxg ‘Illinois’ were as follows: (a) 17.2, 6.3, 4.4, and 13.5 (lmol

m�2 s�1); (b) 36, 25, and 79 (%); (c) 0.19; 0.06; 0.06, and 0.20 (dimensionless); (d) 35, 32, and 107 (%) (e) 0.11, 0.07, 0.05, and 0.09 (mol

m�2 s�1); (f) 68, 50, and 84 (%); (g) 0.36, 0.67, 0.65, and 0.41 (dimensionless); (h) 197, 196, and 123 (%). Data are mean + SE (n = from 3

to 6, as indicated below panel g). F1 = the first generation of Saccharum 9 Miscanthus hybrids (miscane); Mxg = M. 9giganteus;

P1 = parent 1 of miscane ‘US 87-1019’; Sof = Saccharum officinarum.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(a) (g)

(b) (h)

(c) (i)

(d) (j)

(e) (k)

(f) (l)
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Results

Chilling experiment in controlled environment chambers

Two of three miscanes, ‘US 84-1058’ and ‘US 87-1019’,

did not differ significantly for Asat from the chilling tol-

erant control, Mxg, after being subjected to chilling con-

ditions (10 °C/5 °C) for 11 days, and also after

subsequently being returned to warm temperatures for

one day (25 °C/20 °C) (Fig. 1a). For Mxg grown at

10 °C/5 °C for 11 days, Asat was 4.4 lmol m�2 s�1,
while for miscane ‘US 84-1058’ and ‘US 87-1019’, Asat

was 5.7 and 3.5 lmol m�2 s�1, respectively, which were

not significantly different from that of Mxg. Moreover,

‘US 87-1019’ and ‘US 84-1058’ showed the highest rates

of leaf CO2 uptake prior to chilling treatment (Fig. 1a),

indicating that their improved chilling tolerance was

not at the expense of photosynthetic capacity under

warm conditions. Additionally, at the beginning of the

chilling treatment (day 0 of experiment when plants

were transferred from 25 °C to 10 °C), miscane ‘US 84-

1058’ had Asat and ФPSII values twice (15.5 lmol m�2

s�1 and 0.14, respectively) and miscane ‘US 87-1019’

over 1.3 times (9.9 lmol m�2 s�1 and 0.08, respectively)

as large as those of Mxg (6.3 lmol m�2 s�1 and 0.06,

respectively) (Fig. 1a,c). In contrast, the remaining

accessions after 11 day at 10 °C/5 °C exhibited up to

103% reduction in Asat (Saccharum sp. ‘L79-1002’) and

up to 90% reduction in ФPSII (Saccharum sp. ‘L79-1002’

and S. officinarum ‘Louisiana Purple’) relative to Mxg.

Recovery values, one day after transfer back to 25 °C,
were similar for the two miscanes ‘US 87-1019’, ‘US 84-

1058’ and Mxg, with Asat between 11.9 and 14.8 lmol

m�2 s�1 and ФPSII between 0.20 and 0.24. Relative to the

prechilling conditions, Mxg, miscane ‘US 87-1019’ and

‘US 84-1058’ showed 79%, 58%, and 41% recovery of

Asat, respectively (Fig. 1b), and 107%, 84%, and 54%

recovery of ФPSII, respectively (Fig 1d). The lowest

recovery of photosynthesis on return to warm condi-

tions was observed for the sugarcane S. officinarum ‘Lou-

isiana Purple’ (4% of the prechilling Asat and 21% of

prechilling ФPSII), which was significantly lower than

the Mxg control (P < 0.001).

For the chilling tolerant control, Mxg, Asat, and ФPSII

declined for the first 2–3 day at 10 °C/5 °C, followed by

a rebound over the following days to stabilize at 69%

and 91% of the rates on initial transfer to 10 °C/5 °C,
respectively (Fig. 2a,d). Two miscanes ‘US 87-1019’ and

‘US-1058’ also showed a rebound in photosynthesis

starting from day 5 or 6, with the Asat and ΦPSII on the

final day of 10 °C/5 °C treatment ending at ~39–44% of

the rates recorded on day 0 of chill treatment (Fig. 2a,

d). Only miscanes ‘US 87-1019’, ‘US 84-1058’, and the

chilling tolerant control, Mxg, had significantly higher

level of stabilization of Asat than the cane Saccharum sp.

‘L79-1002’, which failed to stabilize readings of Asat dur-

ing 11 days of chilling treatment and ended at �2% of

the day 0 rates, respectively (Fig. 2a–c). For ΦPSII, four

accessions, miscane ‘US 87-1019’, miscane ‘US-1058’,

Saccharum hybr. ‘NCo310’, and Mxg, stabilized at signif-

icantly higher levels than Saccharum sp. ‘L79-1002’

(Fig. 2d–f). However, the commercial cultivar Saccharum

hybr. ‘NCo310’ was not significantly different from en-

ergycane ‘L79-1002’ for Asat, and ci/ca at the end of chill-

ing period (after 11 day in 10 °C/5 °C). There were no

significant differences between energycane ‘L79-1002’,

S. officinarum ‘Louisiana Purple’ and Z. mays ‘FR1064’

for Asat, ΦPSII, gs, and ci/ca after 11 days in 10 °C/5 °C
(Fig. 2c,f,i,l).

All lines increased in ci/ca on transfer to 10 °C/5 °C
(Fig. 1g–h). Over the 11 days of chilling, all genotypes

except miscane ‘US-1058’ had significantly higher ci/ca
than the Mxg control. In contrast to the observations for

ci/ca, gs of all genotypes decreased over the 11 days of

chilling (Fig. 1e–f). For three of eight genotypes, gs
increased with the onset of chilling on day 0 and then

decreased during the subsequent days of chilling treat-

ment; the other five genotypes decreased in gs after only

20 min in chilling. One day after, the plants were trans-

ferred from chilling to warm conditions, miscanes ‘US

87-1019’ and ‘US-1058’ had a similar recovery of gs as

Mxg, but the other genotypes did not (Fig. 1f).

Fig. 2 Changes in relative values for gas exchange and fluorescence parameters over 11 days of chilling treatment (10 °C/5 °C day/

night). Values are expressed as a percentage of rates on day 0 measured immediately after transfer of plants from warm (25 °C/20 °C

day/night) to chilling conditions. Light-saturated leaf net CO2 uptake rate (Asat; a–c), quantum yield of photosystem II (ФPSII; d–f),

stomatal conductance to water vapor (gs; g–i), and ratio of intercellular to atmospheric CO2 concentration (ci/ca; j–l). Panels a, d, g,

and j are miscanes ‘US 84-1028’, ‘US 84-1058’ and positive control Mxg ‘Illinois’, b, e, h, and k are miscane ‘US 87-1019’ and its cane

parent Saccharum hyb. ‘NCo310’, c, f, i, and l are negative controls. Data are means � SE (n = from 3 to 6, as indicted below Fig. 1g).

An asterisk indicates a significantly higher value, and a cross indicates a significantly lower value in comparison with Saccharum sp.

‘L79-1002’ (bold) on the 11th day after transfer to 10 °C/5 °C based on Dunnett’s test (P ≤ 0.05). Values for Saccharum sp. ‘L79-1002’

on the 11th day of chilling treatment were as follows: (c) �2%, (f) 9%, (i) 43% (l) 142%. F1 = the first generation of Saccharum 9 Mi-

scanthus hybrids (miscane); Mxg = M. 9giganteus; P1 = parent 1 of miscane ‘US 87-1019’; Sof = Saccharum officinarum.
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(a)

(b)

(c) (d) (e)

Fig. 3 Air temperatures during the 2013 growing season for a field trial at the Dixon Springs Agricultural Center in southern Illinois

where on 23–24 Oct 2013 leaf gas exchange rates were measured. (a) Average daily temperatures for growing season; (b) average

hourly temperatures in the period between day before and day after measurements; (c) light-saturated leaf net CO2 uptake rate (Asat);

(d) stomatal conductance to water vapor (gs); and (e) ratio of intercellular to atmospheric CO2 concentration (ci/ca). The black arrow

(panel a) indicates day of planting, and the gray arrows (panels a and b) indicate time when measurements of leaf gas exchange rates

were taken. Dashed lines across panels a and b indicate the chilling threshold of 10 °C. (b) On 23 and 24 October during the part of

day when measurements were taken, the average, low, and high temperatures were as follows: 9.2 °C (7.9–10.0 °C); 7.4 °C (4.9–

9.1 °C), respectively. Measurements were taken at a leaf temperature of 13.4 °C (�0.4), photon flux of 1500 lmol m�2 s�1, and 400

lmol mol�1 of CO2 in air. An asterisk indicates significantly different values in comparison with Mxg ‘Illinois’ (bold) based on Dun-

nett’s test (P ≤ 0.05). Data are means + SE (n = from 3 to 4; as indicated below panel c). F1 = the first generation of Saccharum 9 Mi-

scanthus hybrids (miscane); Mxg = M. 9giganteus; Sof = Saccharum officinarum.
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When miscane ‘US 87-1019’ and its sugarcane parent

‘NCo310’ were grown at 25 °C (warm), no significant

differences in Asat and ФPSII between parent and prog-

eny were observed. Specifically, ‘US 87-1019’ grown at

25 °C/20 °C for 10 days had Asat and ФPSII values of

25 lmol m�2 s�1 and 0.28, respectively, and similarly

for Saccharum ‘NCo310’ the values were only slightly

lower at 22 lmol m�2 s�1 and 0.27, respectively (Fig. 1a,

c). However, on the 11th day of chilling treatment, mis-

cane ‘US 87-1019’ had a leaf CO2 uptake rate that was

three times that of its sugarcane parent. Additionally,

miscane ‘US 87-1019’ had 2.8 times higher CO2 assimila-

tion than its sugarcane parent, ‘NCo310’, after transfer

back to warm conditions (recovery).

Field experiment

Plants grown in the field at Dixon Springs, Illinois, in

the autumn of 2013 experienced chilling temperatures

below 10 °C during the 17 days (4 days in September

and 13 days in October) prior to measurements of gas

exchange (Fig. 3a). The average air temperature in first

22 days of October was 15.5 °C with the minimum at

0.1 °C and maximum at 29.7 °C. On 23 and 24 October

during the part of day when measurements were taken,

the average, low and high temperatures were as fol-

lows: 9.2 °C (7.9–10.0 °C), 7.4 °C (4.9–9.1 °C), respec-

tively (Fig. 3b). Of three miscanes examined in late

October in the field, one accession, ‘US 84-1058’, had

comparable Asat, gs, and ci/ca to the chilling tolerant

control, Mxg (Fig. 3c–e). Asat for Mxg and miscane ‘US

84-1058’ was 13.1 lmol m�2 s�1 (Fig. 3c). The Asat of

Mxg was three time higher than Asat of to two other

miscanes, ‘US 87-1019’ and ‘US 84-1928’ and six times

higher than Asat of S. officinarum ‘Louisiana Purple’.

Discussion

Can chilling tolerance of C4 photosynthesis in Miscanthus
be transferred to sugarcane?

To answer the question whether chilling tolerance of C4

photosynthesis in Miscanthus can be transferred to sug-

arcane, we compared the gas exchange readings for

three miscanes with results obtained for Mxg when

grown in the same chilling conditions. As the Miscan-

thus parents of the miscane hybrids were not available,

we chose for a chilling tolerant control the previously

studied Miscanthus genotype, Mxg, which has been

shown to have exceptionally efficient photosynthesis at

low temperature for a high yielding C4 plant (Long &

Spence, 2013). Unexpectedly, we identified two Saccha-

rum 9 Miscanthus hybrids (miscanes ‘US 84-1058’ and

‘US 87-1019’) that were not significantly different from

the chilling tolerant Mxg when gas exchanges values

were compared for plants grown at 10 °C/5 °C for

11 days in controlled environment chambers (Fig. 1).

Furthermore, we were able to confirm photosynthetic

chilling tolerance of miscane ‘US 84-1058’ under field

conditions during the autumn in southern Illinois

(Fig. 3), indicating that the chilling tolerance of C4 pho-

tosynthesis in Miscanthus could be transferred to sugar-

cane. However, not all of the miscane genotypes that

we tested had chilling tolerance. For example, miscane

‘US 84-1028’ lacked chilling tolerant photosynthesis,

with Asat after 11 days of growth at 10 °C/5 °C that

was a fraction of that of the best miscane in our study,

‘US 84-1058’ (Fig. 1). Differences among miscane geno-

types for chilling tolerance could be due to different lev-

els of chilling tolerance contributed by the Miscanthus

parents and/or interactions between genes from the Mi-

scanthus and Saccharum parents. Moreover, the initial

Asat before cold treatment was higher for the miscanes

‘US 84-1058’ and ‘US 87-1019’ than for Mxg (Fig. 1a).

Thus, even though the relative responses (compared to

their initial Asat values, Fig. 1b) of ‘US 84-1058’ and ‘US

87-1019’ to chilling were intermediate to Mxg (high)

and the sugarcane (low) controls, because they started

with higher per se values, their final Asat values were

similar to Mxg even after 11 days of chilling stress.

Because the Miscanthus parents were not available for

our current study, the comparison of F1 progeny with

their non-Saccharum parents was unfortunately not pos-

sible. However, in a previous screen of Miscanthus

germplasm, we found variation among species, and

among genotypes within species for leaf extension rates

and photosynthesis at low temperature (Głowacka et al.,

2014). Thus, selection of parents and early generation

miscane hybrids for chilling tolerant photosynthesis is

advisable to successfully breed sugarcane for this trait.

The miscanes evaluated for photosynthesis at low

temperature in the current study, ‘US84-1028’, ‘US84-

1058’, and ‘US87-1019’, had previously been shown to

resprout after being cut in the autumn and then allowed

to over-winter in a field (overwintering ability when cut

to 15 cm in the autumn) at Booneville, Arkansas (Bur-

ner et al., 2009). Interestingly, in the previous study

‘US84-1028’ and ‘US84-1058’ had acceptable overwinter-

ing ability and vigor in Arkansas, but ‘US87-1019’

lacked vigor after overwintering (Burner et al., 2009),

whereas in the current study, photosynthesis of ‘US84-

1028’ had poor tolerance to chilling, but ‘US84-1058’

and ‘US87-1019’ had good tolerance to chilling. Thus,

chilling tolerant photosynthesis did not necessarily

ensure good overwintering ability and vice versa. Cold

tolerance is a complex set of component traits, and it

will likely be advantageous to select for the different

components when breeding sugarcane for adaptation to
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more temperate environments than where this crop is

currently grown commercially.

The primary source of germplasm to improve sugar-

cane for tolerance to biotic and abiotic stresses has been

S. spontaneum. However, the potential of S. spontaneum

for breeding cold tolerant sugarcane may be more lim-

ited than Miscanthus because the latter has a more

northern and temperate natural distribution (to hardi-

ness zone 3 in eastern Russia). Additionally, as S. spon-

taneum is listed on the federal noxious weed list, from

the United States Department of Agriculture Plants

Database it cannot be evaluated under natural field con-

ditions; only tests under controlled conditions are

allowed. Although the natural distribution of S. sponta-

neum does not extend as far north in Asia as Miscanthus,

S. spontaneum populations occur in environments as

diverse as tropical lowlands in South-East Asia to the

temperate midlatitudes of Honshu, Japan. Thus, the

cold tolerance of sugarcane progeny derived from

S. spontaneum is expected to be strongly associated with

a given S. spontaneum accession’s adaptation to the envi-

ronment in which it originated. Brandes (1940) reported

selecting cold tolerant S. spontaneum clones able to sur-

vive 18 days of below freezing temperatures. In con-

trast, Breaux & Irvine (1976) observed that when

actively growing young seedlings of S. spontaneum were

frozen for 8 h, only 10% survived the test; moreover,

under natural freezing conditions, these selected survi-

vors were no more resistant to low temperatures than

unselected populations. Recently, Hale et al. (2014) eval-

uated 41 S. spontaneum accessions for survivability of

below ground (stubble) buds following exposure to

freezing temperatures of �7 °C and identified four

accessions that had more ratoon cold tolerance than the

most tolerant commercial sugarcane variety tested

(HoCP 96-540). However, when progeny of ten sugar-

cane 9 S. spontaneum hybrids was examined for stubble

cold tolerance in Arkansas, none of the progeny sur-

vived (Burner et al., 2009). When the energycane variety

‘Ho 02-113’, a hybrid of S. spontaneum ‘SES 234’ from

the Himalayan foothills of northern India and a leading

commercial sugarcane variety LCP 85–384 (S. officina-

rum 9 S. spontaneum 9 S. barberi 9 S. sinense) (Milligan

et al., 1994; Hale et al., 2013), was grown for six days at

12 °C/5 °C and then moved back to 25 °C/20 °C for

one day, its ability to recover net CO2 assimilation rate

was 63% of the initial values at 25 °C on day 0 (Friesen

et al., 2014); however, this was 21% less than the recov-

ery of Mxg when grown in the same conditions. In our

experiment, the difference between the recovery level of

Mxg and the best miscane tested, ‘US87-1019’, was

20.5%. Thus, both S. spontaneum and Miscanthus acces-

sions have potential to improve chilling tolerance in

sugarcane. Choice of S. spontaneum and Miscanthus

parents with exceptional levels of cold tolerance will be

key to further improving sugarcane for this trait. To

date, crosses between Miscanthus and sugarcane have

used genotypes of Miscanthus that grew well in subtrop-

ical or tropical environments, where sugarcane crossing

was routinely conducted. Thus, there is an opportunity

to make additional genetic gains in cold tolerance of

sugarcane by selecting donor Miscanthus parents with

greater cold adaptation, such as those that originate

from northern China, northern Japan, and eastern

Russia.

Physiological mechanisms of chilling tolerance

All eight accessions studied showed decreases in Asat,

and ΦPSII and increases in ci/ca, after transfer from

warm to chilling (Fig. 1). In chilling, stomata reacted by

reducing their aperture when the concentration of CO2

increased in the intercellular compartment as a conse-

quence of decreased of CO2 fixation. The time needed

for the stomata to compensate for new internal environ-

mental conditions associated with chilling differed

among genotypes but all eventually did compensate.

For three of eight genotypes, gs increased with the onset

of chilling on day 0 and then decreased during the fol-

lowing chilling treatment; the other five genotypes

decreased in gs after only 20 min in chilling. Thus, dif-

ferences among accessions for relative decreases in Asat

could not be explained by deficiency in CO2 or by loss

of stomatal function. On the other hand, comparisons of

Asat readings with values of ΦPSII indicated that light-

induced chilling damage of PSII was the primary reason

for low CO2 assimilation in chilling susceptible acces-

sions. Similar patterns of change for physiological

parameters in response to low temperature were previ-

ously observed in Miscanthus and sugarcane (Farage

et al., 2006; Głowacka et al., 2014).

Typically, in warm-temperate environments at the

beginning and end of the growing season significant

fluctuations of temperatures are recorded (e.g., USDA

hardiness zone 8 in the southern USA). At these times

of the year, after chilling or frost events at night, days

with bright sun and relatively high temperatures can

occur, that causes a potential challenge for photosyn-

thetic apparatus in C4 plants mainly because of the risk

of photodamage to PSII (Long, 1983; Long et al., 1994;

Allen & Ort, 2001).

In our study, in comparison with the chilling sensitive

sugarcane lines, two miscanes (‘US 84-1058’ and ‘US 87-

1019’), were better in recovery of Asat, ΦPSII, and gs when

returned to warm conditions for <24 h (Fig. 1). Addi-

tionally, ‘US 84-1058’ exhibited relatively high Asat

when grown in natural cycles of chilling and warm

temperatures during autumn in a field trial in southern
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Illinois. Thus, some miscanes appear to have an ability

to protect the photosynthetic apparatus, permitting rela-

tively high rates of photosynthesis at low temperature

per se, and perhaps more importantly, enabling these

undamaged plants to assimilate even more carbon on

subsequent warm days.

Will chilling tolerant miscanes be less photosynthetically
efficient in warm conditions than sugarcane?

A key challenge for plant breeders is to introgress desir-

able traits from wild or distantly related species into

domesticated crops but at the same retain the favorable

traits of the crop. When crossing a temperate-adapted

species such as M. sinensis to a tropical crop such as

sugarcane, there is the potential for tradeoffs associated

with adaptation to different temperatures. Fortunately,

however, we did not observe such a tradeoff for photo-

synthesis in the miscanes. For example, miscane ‘US 87-

1019’ did not differ significantly from its sugarcane par-

ent, ‘NCo310’, for Asat and ФPSII when grown at 25 °C/
20 °C but had significantly higher leaf photosynthetic

gas exchange on the 11th day of chilling treatment

(Fig. 1). Previously, studies on Saccharum 9 Miscanthus

hybrids showed that values of agronomic traits for mis-

cane were intermediate between the two parents (Chen,

1953; Chen et al., 1983). Whether backcrossing can be

employed without losing chilling tolerant photosynthe-

sis will depend on the number of genes that confer the

trait, their interaction with sugarcane genes and the

identification of marker–trait associations for marker-

assisted selection.

We have shown that the chilling tolerance of C4 pho-

tosynthesis in Miscanthus can be successfully transferred

to sugarcane. The selected chilling tolerant miscanes,

‘US 84-1058’ and ‘US 87-1019’, have particular value for

biomass feedstock and biofuel production, and at the

same time they can be a starting point for extending

sugarcane’s range to higher latitudes and altitudes than

current production regions. Although previous efforts

to improve sugarcane with genes from Miscanthus have

been few, these initial efforts point the way toward a

bright future. In the last 30 years, our understanding of

chilling tolerance in Miscanthus (Long & Spence, 2013;

Głowacka et al., 2014), as well as the genetic diversity of

this genus, has increased greatly (Hodkinson et al.,

2002; Clark et al., 2014; Głowacka et al., 2015). This

knowledge will facilitate improvement of sugarcane

with genes from Miscanthus.

Acknowledgements

We thank Andrew Hauck and Juan Marroquin for help with
plant material propagation; Steven Moose for providing the

maize FR1064 seeds from Illinois Foundation Seeds (Tolono, IL,
USA); and members of the Long Laboratory for stimulating
discussions during experiment design and writing the manu-
script. The data presented herein were funded in part by the
Advanced Research Projects Agency-Energy (ARPA-E), USA,
Department of Energy, under Award Number DE-AR0000206.

References

Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in

warm-climate plants. Trends in Plant Science, 6, 36–42.

Allison JCS, Pammenter NW, Haslam RJ (2007) Why does sugarcane (Saccharum sp.

hybrid) grow slowly? South African Journal of Botany, 73, 546–551.

Andru S, Pan Y-B, Thongthawee S, Burner DM, Kimbeng CA (2011) Genetic analysis

of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using

AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics, 123, 77–93.

Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant

energy conversion in cooi climates? Plant, Cell and Environment, 18, 641–650.

Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of

parameters required to model RuBP-limited photosynthesis. Plant, Cell and Envi-

ronment, 26, 1419–1430.

Bischoff K, Gravois K, Reagan T et al. (2008) Registration of ‘L 79-1002’ Sugarcane.

Journal of Plant Registrations, 2, 211–217.

Botha FC, Moore PH (2014) Biomass and Bioenergy. In: Sugarcane: Physiology, Bio-

chemistry, and Functional Biology (eds Moore PH, Botha FC), pp. 521–540. John Wi-

ley & Sons Inc, Chichester, UK.

Brandes E (1940) Survival of wild sugarcane buds exposed to below zero tempera-

tures. Sugar Bulletin, 18, 3.

Breaux R, Irvine J (1976) Selection for cold tolerance in sugarcane seedlings from

new germplasm. Journal of American Society of Sugar Cane Technologists, 5, 178–181.

Brown JS, Schnell RJ, Power EJ, Douglas SL, Kuhn DN (2007) Analysis of clonal

germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S.

sinense and S. spontaneum. A study of inter- and intra species relationships using

microsatellite markers. Genetic Resources and Crop Evolution, 54, 627–648.

Burner DM (1997) Chromosome transmission and meiotic behavior in various sugar-

cane crosses. Journal of American Society of Sugar Cane Technologists, 17, 38–50.

Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and qual-

ity of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass

and Bioenergy, 33, 610–619.

Chen C (1953) Genetical analysis of morphological characters of the OMM-type

hybrid obtained from the POJ 2725 9 Miscanthus japonicas cross. Proceedings

International Society Sugar Cane Technologists, 8, 533–546.

Chen YH (1993) Genetics and breeding studies on Saccharum-Miscanthus nobiliza-

tion. Memoirs of the College of Agriculture, National Taiwan University, 33, 345–350.

Chen YH, Lo CC (1988) Disease resistance and sugar content in Saccharum-Miscan-

thus hybrids. Report of the Taiwan Sugar Research Institute, 120, 1–8.

Chen W, Huang Y, Shen I, Shih S (1983) Utilization of Miscanthus germplasm in sug-

arcane breeding in Taiwan. Proceedings International Society Sugar Cane Technolo-

gists, 18, 641–648.

Chen YH, Chen C, Lo CC (2000) Extraordinary phenomenon of cell division in Sac-

charum, Miscanthus and their nobilized progenies. Report of the Taiwan Sugar

Research Institute, 170, 27–44.

Clark L, Brummer J, Głowacka K et al. (2014) A footprint of past climate change on

the diversity and population structure of Miscanthus sinensis. Annals of Botany,

114, 97–107.

Clifton-Brown JC, Lewandowski I, Andersson B et al. (2001) Performance of 15 Mi-

scanthus genotypes at five sites in Europe. Agronomy Journal, 93, 1013–1019.

Daniels J, Roach B (1987) Taxonomy and evolution. In: Sugarcane Improvement

through Breeding (ed. Heinz D), pp. 7–84. Elsevier, Amsterdam, the Netherlands.

D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996)

Characterisation of the double genome structure of modern sugarcane cultivars

(Saccharum spp.) by molecular cytogenetics. Molecular Genetics and Genomics, 250,

405–413.

FAOSTAT (2014) Food and Agriculture Organization of the United Nations Statistics

Division [online database] Available at: http://faostat3.fao.org/download/Q/

QC/E; (accessed 24 Novermber 2014).

Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify

the efficiency of light use by photosystem II for CO2 chilling-tolerant C4 assimila-

tion in leaves of two species, Cyperus longus L. and Miscanthus 9 giganteus. Plant,

Cell and Environment, 29, 720–728.

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 407–418

CHILLING TOLERANCE IN MISCANTHUS 9 SACCHARUM 417

http://faostat3.fao.org/download/Q/QC/E
http://faostat3.fao.org/download/Q/QC/E


Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation

in cold tolerance influences the yield of Miscanthus. Annals of Applied Biology, 149,

337–345.

Friesen PC, Peixoto MM, Busch FA, Johnson DC, Sage RF (2014) Chilling and frost

tolerance in Miscanthus and Saccharum genotypes bred for cool temperate cli-

mates. Journal of Experimental Botany, 65, 3749–3758.

Genty B, Briantis JM, Baker NR (1989) The relationship between the quantum yield

of photosynthetic electron transport and quenching of chlorophyll fluorescence.

Biochimica et Bio-physica Acta, 990, 87–92.

Głowacka K, Adhikari S, Peng J et al. (2014) Variation in chilling tolerance for

photosynthesis and leaf extension growth among genotypes related to the C4

grass Miscanthus 9giganteus. Journal of Experimental Botany, 65, 5267–5278.

Głowacka K, Clark LV, Adhikari S et al. (2015) Genetic variation in Miscanthus

9giganteus and the importance of estimating genetic distance thresholds for

differentiating clones. Global Change Biology Bioenergy, 7, 386–404.

Grantz DA (1989) Effect of cool temperatures on photosynthesis and stomatal con-

ductance in field-grown sugarcane in Hawaii. Field Crops Research, 22, 143–155.

GRIN (2008) USDA, ARS, National Genetic Resources Program, Germplasm

Resources Information Network – (GRIN) [online database]. Beltsville, MD:

National Germplasm Resources Laboratory, Available at: http://www.ars-grin.-

gov/cgi-bin/npgs/html/ taxgenform.pl; (accessed 27 August 2008).

GRIN (2014) USDA, ARS, National Genetic Resources Program, Germplasm

Resources Information Network – (GRIN) [online database]. Beltsville, MD:

National Germplasm Resources Laboratory, Available at: http://www.ars-grin.-

gov/cgi-bin/npgs/html/ taxgenform.pl; (accessed 24 November 2014).

Hale AL, Dufrene EO, Tew TL et al. (2013) Registration of ‘Ho 02-113’ Sugarcane.

Journal of Plant Registrations, 7, 51–57.

Hale AL, Viator RP, Veremis JC (2014) Identification of freeze tolerant Saccharum spon-

taneum accessions through a pot-based study for use in sugarcane germplasm

enhancement for adaptation to temperate climates. Biomass and Bioenergy, 61, 53–57.

Heaton E, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land:

the potential of Miscanthus. Global Change Biology, 14, 1–15.

Hoarau J-Y, Offmann B, D’Hont A, Risterucci A-M, Roques D, Glaszmann J-C, Griv-

et L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) I.

Genome mapping with AFLP markers. Theoretical and Applied Genetics, 103, 84–97.

Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic

resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using

AFLP and ISSR PCR. Annals of Botany, 89, 627–636.

Je _zowski S, Głowacka K, Kaczmarek Z (2011) Variation on biomass yield and mor-

phological traits of energy grasses from the genus Miscanthus during the first

years of crop establishment. Biomass and Bioenergy, 35, 814–821.

Kaiser CM (2014) Characterizing phenotypic diversity, genotype by environment interac-

tions, and optimizing selection efficiency of a Miscanthus germplasm collection. PhD

Thesis. University of Illinois at Urbana-Champaign, USA.

Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: Euro-

pean experience with a novel energy crop. Biomass and Bioenergy, 19, 209–227.

Li HW, Loh CS, Lee CL (1948) Hybrids between Saccharum officinarum, Miscanthus

japonicus and S. Spontaneum. Bulletin of Academia Sinica (Taipei), 2, 147–160.

Li HW, Ma TH, Shang KC (1953) Cytological studies of sugarcane and its relatives.

X. Exclusive, ‘patroclinous’ type in the F1 of sugarcane variety and Miscanthus

japonicus Anders. Report of the Taiwan Sugar Experiment Station, 10, 1–12.

Li HW, Weng TS, Shang KC, Yang PC (1961) Cytological studies of sugarcane and

its relatives: XVII. Trigeneric hybrids of Saccharum officinarum L., Sclerostachya

fusca A. Camus, and Miscanthus japonicus Anderss. Botanical Bulletin of Academia

Sinica (Taipei), 2, 1–9.

Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, de Souza CL Jr, de

Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient

of parentage among genotypes of sugar cane (Saccharum spp.). Theoretical Applied

Genetics, 104, 30–38.

Lo C, Chia Y, Chen W, Shang K, Shen I, Shih S (1978) Collecting Miscanthus germ-

plasm in Taiwan. Proceedings of International Society of Sugar Cane Technologists, 16,

59–69.

Loh CS, Wu TH (1949) A note on the Trihybrids of (S. officinarum x S. robustum) x

Miscanthus japonica. Sugarcane Research Annual Progress Report, 3, 377–386.

Long SP (1983) C4 photosynthesis at low temperatures. Plant, Cell and Environment,

6, 345–363.

Long SP, Spence AK (2013) Toward Cool C4 Crops. Annual Review of Plant Biology,

64, 701–722.

Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in

nature. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 633–662.

Mangelsdorf A (1960) Sugarcane breeding methods. Proceedings International Society

of Sugar Cane Technologists, 10, 694–701.

Milligan S, Martin F, Bischoff K et al. (1994) Registration of LCP-85 384 Sugarcane.

Crop Science, 34, 819–820.

Nose A, Uehara M, Kawamitsu Y (1994) Variations in leaf gas exchange traits of Sac-

charum including feral sugarcane, Saccharum spontaneum L. Japanese Journal of Crop

Science, 63, 489–495.

Park J, Yu Q, Gracia N, Acuna G, da SJ (2011) Development of new intergeneric cane

hybrids, Miscanes, as a source o biomass feedstock or biofuel production. Proc.

Plant and Animal Genomes XIX Conference, 2011

Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of

chromosome composition and transmission in sugarcane. Molecular Genetics and

Genomics, 284, 65–73.

Price S (1965) Cytology of Saccharum robustum and related sympatric species and

natural hybrids. Technical Bulletin - United States Department of Agriculture, 1337,

46–47.

Sage RF, Peixoto MM, Sage TL (2014) Photosynthesis in Sugarcane. In: Sugarcane:

Physiology, Biochemistry, and Functional Biology (eds Moore PH, Botha FC), pp.

121–154. John Wiley & Sons Inc, Chichester, UK.

Tai PYP, Miller JD (1988) Phenotypic characteristics of the hybrids of sugarcane

x related grasses. Journal of American Society of Sugar Cane Technologists, 8,

5–11.

Tai PYP, Gan H, He H, Miller JD (1991) Phenotypic characteristics of F2 and BC1

progenies from sugarcane intergeneric crosses. Journal of American Society of Sugar

Cane Technologists, 11, 38–47.

WARM (2014) Water and Atmospheric Resources Monitoring Program. Illinois Cli-

mate Network [online database]. Champaign, IL: Illinois State Water Survey,

Available at: http://www.isws.illinois.edu/warm/stationmeta.asp?site=DXS&-

from=wx; (accessed 4 December 2014).

Xiao FH, Tai PYP (1994) Antheral transformation into stigma in interspecific and in-

tergeneric hybrids of Saccharum. Journal of American Society of Sugar Cane Technolo-

gists, 14, 22–39.

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 407–418

418 K. GŁOWACKA et al.

http://www.ars-grin.gov/cgi-bin/npgs/html/
http://www.ars-grin.gov/cgi-bin/npgs/html/
http://www.ars-grin.gov/cgi-bin/npgs/html/
http://www.ars-grin.gov/cgi-bin/npgs/html/
http://www.isws.illinois.edu/warm/stationmeta.asp?site=DXS%26from=wx
http://www.isws.illinois.edu/warm/stationmeta.asp?site=DXS%26from=wx

